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By the time the World Health Organization declared COVID-19  
(scientifically referred to as the severe acute respiratory syn-
drome–coronavirus 2 or SARS-CoV-2) a pandemic on 11 

March 2020, the virus had already spread from China to other Asian 
countries, Europe and the United States. As of 5 July 2020, cases 
have been identified in 188 countries or regions1. This has led to 
unprecedented enforced and voluntary restrictions on travel and 
work. This in turn has led to reductions of both GHG emissions and 
air pollutants2–4. Analysis of mobility data from Google5 and Apple6 
shows that mobility declined by 10% or more during April 2020 in 
all but one of the 125 nations tracked. Mobility declined by 80% 
in five or more nations (Supplementary Fig. 1). Associated declines 
in air pollution have been observed from satellite data and from 
local ground-based observations7,8. The large pollution declines are 
expected to be temporary as pollution levels are already returning to 
near-normal in parts of Asia9,10.

Here we build an estimate of emission changes in GHGs and 
air pollution due to the COVID-19 global restrictions during the 
period February–June 2020 and project these into the future. These 
emission changes are then used to make a prediction of the resultant 
global temperature response. We examine the temperature response 
of a direct recovery to pre-COVID-19 national policies and emis-
sion levels, and also explore responses where the economic recovery 
to COVID-19 is driven by either a green stimulus package or an 
increase in fossil fuel use.

Emission trends
Bottom-up emission-trend analyses have traditionally relied on 
laborious collection of various energy-industry-related indicators 

and statistics from multiple sources11. The unprecedented recent 
access to global mobility data from Google and Apple gives a unique 
opportunity to compare trends across many countries with a con-
sistent approach. We use these data to develop a new method of 
emission-trend analysis. The advantage over previous approaches 
is the possibility of near-real-time analysis, national granularity and 
a systematic consistent approach across nations and over time. The 
disadvantages are the loss of a direct connection between energy 
and emissions and the need to make assumptions about these rela-
tionships. There are also disadvantages over the short time history 
of the mobility data and opacity from the data providers around 
their detailed methodologies and uncertainties. Here we make a 
simple set of assumptions to deduce estimates of emissions change 
from the mobility data and test the estimates extensively against the 
approach of Le Quéré et al.3.

Google and Apple mobility changes and the Le Quéré et al.3 data 
all indicate that >50% of the world’s population reduced travel by 
>50% during April 2020 (Fig. 1a). Google mobility trends indicate 
that >80% of the population in the 114 countries in the dataset 
(4 billion people) reduced their travel by >50%. Google mobility 
data and emission reduction estimates based on confinement level 
analysis in Le Quéré et al.3 agree on country-level surface-transport 
trends to within ~20% (Fig. 1b and Supplementary Fig. 1). When we 
examine the trends for the countries that we expect have contributed 
most to the overall surface-transport emission change (for example, 
the United States, European nations and India), good agreement 
between the datasets is observed and their trends are well-correlated 
in time (see Fig. 1b and Extended Data Fig. 1). Workplace, retail and 
residential movement data from Google also compare relatively well 
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with corresponding industry, public and residential sector emission 
changes but only if the high estimate of the emission change in the 
Le Quéré et al.3 dataset (Fig. 1b,c and Supplementary Figs. 3 and 4) 
is used.

Using mobility data outside of the surface-transport sector is 
likely to overestimate the emission change and this appears to be the 
case for CO2 emissions when compared to two previous estimates1,2. 
Nevertheless, our national and US state-level mobility-derived emis-
sion estimates are well-correlated in time with emission changes 
from the Le Quéré et al.3 study (see examples in Supplementary 
Figs. 3 and 4). For the industry sector, differences may be due to the 
fact that the emissions from industrial activity are less correlated 
with mobility trends, due to automated machinery, inertia in closing 
operations or alternative modes of work, or a baseline level of indus-
trial emission from heavy industry in the absence of production, 
neither which would be captured by the Google mobility data which 
only report changes in phone locations. For the residential sector, 
the 20% median increase matches the UK smart meter analysis by 
Octopus Energy for the situation when previously empty houses 
were occupied during the day after lockdown restrictions began12. 
However, many households were already occupied during the day 
and in these situations, when an additional occupant was added, 
energy use only increased by 4%. These factors probably mean that 
our Google-based trends overestimate the emission change from 
these sectors, leading to our Google-based total emission-trend 
estimate agreeing better with the high emission estimate from the 
Le Quéré et al.3 dataset. Our analysis also suggests considerably 
larger trends than those found in Liu et al.2 (compare datasets in 
Fig. 1c). There is also a question about how representative the Apple 

and Google datasets are of wider national behaviour and how the 
use and penetration of these phone operating systems varies across 
regions13. For example, the >80% drop in Apple driving mobility in 
India (Fig. 1a and Supplementary Fig. 1), may only represent the 
part of the population that are able to work from home. Therefore, 
the emissions trends in our work which are largely derived from 
Google mobility data should be taken as a high estimate of the 
COVID-19 emission-driven change (see Methods).

In the following, we construct 2020 emission changes largely 
from Google mobility data to estimate emissions changes from the 
restriction measures in response to the COVID-19 virus, as illus-
trated in Fig. 1c. As Google data are not available everywhere, we use 
the Le Quéré et al.3 analysis to cover important missing countries, in 
particular, China and Iran, which are large emitters whose citizens 
have been under considerable restrictions related to COVID-19. We 
also use Le Quéré et al.3 data to provide additional trend estimates 
from aviation and shipping sectors (see Methods).

Our bottom-up analysis uses 123 countries covering >99% of 
global fossil fuel CO2 emissions, extending the 69 countries anal-
ysed in Le Quéré et al.3. Daily national emission trends in six sectors 
are analysed for January–June 2020 (surface transport, residential, 
power, industry, public and aviation). These are then weighted by 
the national and sector split of seven emitted species covering the 
major GHGs and short-lived pollutants. The estimated changes 
in these non-CO2 species covers their total anthropogenic emis-
sions, although agricultural and waste emissions are assumed not 
to change (Methods). National and sector data are taken from the 
Emissions Database for Global Atmospheric Research (EDGAR) 
v.5.0 database for 201514. These data are combined to generate 
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Fig. 1 | Comparison of sector emission trends. a, Population-weighted histogram of surface-transport trends from Apple driving data, Google transit 
mobility data and the high estimate from Le Quéré et al.3 for available countries in the different datasets averaged over April 2020. b, Violin plots showing 
the distribution, minimum, maximum and median levels of national trends weighted by CO2 emissions for the Google and Le Quéré et al.3 datasets and 
the differences between the datasets evaluated over April 2020. c, Estimates of emission changes for the datasets across four sectors for April 2020 and 
the sum of the four sectors. The CO2 emission estimates from Liu et al.2 are also shown on this panel. In b and c, data are shown for 60 countries with 
overlapping data in the Google and Le Quéré et al.3 datasets (representing 60% of global CO2 emissions). In c, Apple data are shown for 57 countries, 
covering 58% of the global emissions. The Liu et al.2 estimate is for a global emission change. The high estimate from Le Quéré et al.3 data is used in a and b. 
Panel c shows the Le Quéré et al.3 low and high estimates as the range of the error bar on the mid-level estimate. For baselines, see Methods.
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national and globally averaged daily emission changes in 2020 by 
species and sector.

To assess changes due to the COVID-19 pandemic, we estab-
lish a baseline scenario. We take a central estimate of emissions 
pathways15, in which countries are assumed to meet their stated 
nationally determined contributions (NDCs) by 2030. In this 
baseline, no further strengthening of climate action after 2030 is 
assumed to take place. These pathways account for both GHG and 
air pollutant emission changes (see Methods). To derive changes 
from this scenario, a three-stage process is followed (see Methods). 
First, fractional Google mobility data use the five-week period  
(3 January to 6 February 2020) as reference. Absolute emission trends  
are then computed by multiplying these fractional changes by 
either the 2019 CO2 emissions from Le Quéré et al.3 or, for other 
species, the 2015 emissions in the EDGAR database14. Finally, these 
absolute changes are then applied to a steadily rising emission 
pathway based on pre-COVID-19 national pledges (see Table 1).  
Only the globally average emission changes are used in this paper 
(see Fig. 2a) but national and spatially gridded data are made 
available for other interested researchers (https://doi.org/10.5281/
zenodo.3957826).

Our analysis shows that emission reductions probably peaked 
in mid-April 2020 and that these reductions are species dependent. 
The data suggest that global fossil fuel CO2 emissions and total 
NOx emissions could have decreased by as much as 30% in April 
2020 driven by a decline in surface-transport emissions (Fig. 2a,b 
and Supplementary Fig. 5). Conversely, organic carbon (OC) has 
increased by <1% as it is primarily affected by rising residential 
emissions (Fig. 2b and Supplementary Fig. 5). Methane changes are 
driven by power sector declines and SO2 is most strongly affected 

by declining industrial emissions. Generally, changes in surface 
transport are the biggest driver of change for most species ana-
lysed (Supplementary Fig. 5). The analysis in Fig. 2b also applies 
our methods to the Le Quéré et al.3 data for non-CO2 species and 
reports both previous estimates of CO2 trend. Our estimated trends 
are close to the high Le Quéré et al. estimate and almost twice as 
large as the CO2 trend estimate of Liu et al.2.

Our data suggest that changes in emissions are not confined to 
the major emitting countries and mobility restrictions have been 
of worldwide proportions (despite the extent of measures—and 
therefore relative emissions changes—varying globally) during 
April 2020 (Fig. 1 and Supplementary Fig. 1). This manifests itself 
in many countries contributing to the emission decline. For the 
short-lived species, Europe and the United States, in spite of their 
large fractional national emission change, make up a small percent-
age of the global response due their relatively low levels of emissions 
from pollution (Fig. 2b and Supplementary Fig. 6).

Observational evidence
Detecting a COVID-19-related signal in CO2 concentrations is 
challenging due to the long atmospheric lifetime of CO2 which 
makes any perturbation small. While the airborne fraction of CO2 
emissions is ~50% on multi-annual timescales11, the airborne frac-
tion of emissions changes is probably above 90% on subannual tim-
escales16. Because CO2 is not well mixed on the timescale of weeks 
to months, individual observing stations will not reflect the global 
CO2 burden—for example, Mauna Loa in the Northern hemisphere 
Pacific Ocean may see a larger signal than at the South Pole from 
the emissions reductions due to COVID-19 restrictions. The mag-
nitude of natural (terrestrial and marine) fluxes of CO2 compared 

Table 1 | Pathway ‘what-if’ assumptions

Pathway What happens Notes

Baseline Follows emissions until 2030, consistent with a successful implementation 
of the current NDC submitted by individual countries under the Paris 
Agreement, adapted from Rogelj et al.15. Emissions continue after 2030, 
assuming no significant strengthening in climate action.

The data are adapted from Rogelj et al.15 and represents 
a central estimate of the range of estimates presented 
therein. This pathway also falls centrally in the range 
identified by the 2019 UNEP Emissions Gap Report30.

Two-year blip Reflecting potential SARS-CoV-2 transmission dynamics22, this case 
explores 66% of the June 2020 lockdown persisting until the end of 2021, 
then emissions linearly recover to baseline by the end of 2022.

This implies a persistent necessity of partial lockdowns 
until the end of 2023 but with no lasting effect of 
SARS-CoV-2.

Fossil-fuelled 
recovery

Follows the two-year blip pathway until the end of 2021, then emissions 
recover in a way similar to the recovery after the 2008/9 global recession, 
rebounding to 4.5% above the baseline at the end of 2022. Stimulus 
packages are designed with strong support for fossil-fuel energy supply, 
resulting in more fossil investment than a pre-COVID-19 current-policy 
scenario (+1%) and considerably less in low-carbon alternatives (−0.8%). 
Resulting emissions are 10% higher in 2030 than the baseline scenario, a 
trend that is assumed to continue thereafter31.

2030 data taken from Climate Action Tracker31, 
‘rebound to fossil-fuel scenario’ with the relative 
increase in emissions compared to baseline continued 
thereafter.

Moderate green 
stimulus

Follows the two-year blip pathway until end of 2021, then emissions 
recover slightly, until the end of 2022 but never reach the baseline 
projections. Governments choose recovery packages to target specifically 
low-carbon energy supply and energy efficiency, and do not support 
bailouts for fossil firms. The resulting investment differential (+0.8% 
for low-carbon technologies and −0.3% for fossil fuels relative to a 
current-policy scenario) begins to structurally change the emissions 
intensity of economic activity, resulting in about a 35% decrease in 
GHG emissions by 2030 relative to the baseline scenario, a trend that is 
assumed to continue thereafter31, consistent with meeting global net-zero 
CO2 by 2060.

Short-term benefits come from changes to the norms 
of behaviour, then green incentives to decarbonize all 
sectors of the economy.

Strong green 
stimulus

As for the moderate green stimulus with investment differentials (+1.2% 
for low-carbon technologies and −0.4% for fossil fuels relative to a 
current-policy scenario), resulting in a slightly more than 50% decrease 
of GHG emissions by 2030 relative to the baseline scenario. This trend is 
continued thereafter, consistent with meeting global net-zero CO2 by 2050.

This has >50% chance of limiting the 2050 temperature 
rise to 1.5 oC above pre-industrial.
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with anthropogenic emissions make it extremely difficult to detect 
changes in emissions at national level from CO2 concentrations 
themselves. We estimate these CO2 concentration changes in the 
temperature response to restrictions section (see Fig. 5b) and find 
maximum reductions compared to our baseline scenario of around 
2 ppm in two years’ time (Extended Data Fig. 2).

Even though the CO2 change cannot readily be observed, changes 
in the concentrations of air pollutants can be used to test the verac-
ity of the bottom-up emission reduction estimates. A decline in NO2 
has been observed globally and in several countries and cities7,8. NO2 
is short-lived (~5 h), provides a relatively linear response to emis-
sion changes (unlike other pollutants, such as O3 and PM2.5) and 
reductions in its emissions are expected to be well-correlated to CO2 
emission reductions (see Fig. 2a and Le Quéré et al.3). Changes in 
its concentration thus act as a useful bellwether for changes in CO2 
emissions. A number of studies report COVID-19-induced changes 
in NO2 concentration from both surface- and satellite-platforms 
over China17,18. However, it remains challenging to get a quantifi-
able estimate of the emission-driven NO2 change as it is hard to 
separate that signal from meteorological variability. To address this 
we follow previous work19 and develop a machine-learning method 
to derive meteorology and chemistry-normalized changes in NO2 
surface concentrations at air quality monitoring stations around the 
globe (see Methods). We aggregate these changes for 32 nations and 
show how these observationally based national time series of NO2 
concentration changes compare to our mobility-based estimate of 
NOx emissions change in Supplementary Fig. 7. Figure 3 shows the 
predicted mobility-based NOx emissions change versus the aver-
age observationally derived NO2 change for each country in 2020. 
Some differences between the emission estimates and observed 
changes would be expected: monitoring stations tend to focus on 
sites with high surface-transport emission and so may be less sen-
sitive to changes in industrial or residential activity; much of the 
surface-transport emissions of NOx arises from commercial vehicles 
(64% of surface-transport emission in the United Kingdom20) which 
may show different responses to the population aggregated mobility 
data used here (see Methods and Supplementary Fig. 2). However, 
the comparisons for the individual countries (Supplementary Fig. 7) 
are generally good and there is a quantitative relationship between 
the average predicted change in the emissions and observed reduc-
tion in concentrations (Fig. 3). Most countries show a smaller  

(20% or roughly two percentage points) decrease in observed NO2 
than the predicted reduction in NOx emissions, whereas China and 
India show larger observed reductions than predicted (28% and 
48%, respectively). This could be due to the Le Quéré et al.3 analy-
sis being used to estimate trends in China as Google data were not 
available and also due a possible lack of representativeness in the 
phone mobility data for India (see Emission trends). As China is the 
largest emitter, our analyses might be affected by a possible signifi-
cant underestimate of Chinese NOx trends and hence global trend 
in the early part of the record, although any global underestimate 
is unlikely to have persisted into April, where the contribution of 
China to the global trend is relatively modest (Fig. 2b).

The temperature response to restrictions
The immediate response of the warming comes from a combination 
of an aerosol-induced warming trend and a cooling trend both from 
CO2 reductions and the NOx-driven tropospheric ozone cooling 
loss (Fig. 4). To estimate the surface temperature response beyond 
April 2020, the emission trends are projected forward in time under 
four simple ‘what-if ’ assumptions. The temperature changes from 
these pathways were simulated by the FaIR v1.5 climate emulator21 
which was set up to represent the response expected from the latest 
generation of climate models (see Methods). As significant social 
distancing conditions may be necessary for two years22, we begin 
by assuming in all pathways that the emissions decrease will remain 
at 66% of their June 2020 values until the end of 2021. In the sim-
plest ‘two-year blip’ pathway, emissions return linearly to the base-
line pathway by the end of 2022 (Table 1 and Fig. 4a). Under such a 
pathway, we project a longer term cooling from reductions in CO2 
of around 0.01 ± 0.005 oC compared to baseline, with a cancellation 
of the influence of the removal of short-term pollutants (Fig. 4b and 
Extended Data Fig. 2).

As the global temperature response due to COVID-19 restric-
tions will probably be small, climate scientists are encouraged to 
look for regional climate signatures. In particular, changes in aero-
sol loadings may contribute to increasing regional risks posed by 
extreme weather, such as heat waves or heavy precipitation23,24. Such 
near-term changes require particular attention as hazards posed 
by extreme weather will compound with the ongoing pandemic 
situation, as exemplified tragically by tropical cyclone Amphan  
hitting Kolkata on 21 May 2020. With considerable overlaps of 
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vulnerable groups (for example, heat waves and the elderly) or 
challenges related to the implementation of effective responses 
(evacuation in case of flooding), as well as potential impacts on crop 
yields25 and initial studies suggesting that the spread of COVID-19 
may itself be influenced by climatic factors22, this will put the ability 
of society and governments to manage compound risks to the test26.

In our estimates, declines in NOx of as much as 30% will contrib-
ute a short-term cooling of up to 0.01 oC over the period 2020–2025 
almost exclusively from reductions in tropospheric ozone. NOx 
trends also contribute an insignificant warming effect from the 
decrease in nitrate aerosol. As the ozone response is expected to 
have strong regional variation, we test the ozone response in a more 
sophisticated emulator27,28 that takes these variations into account 
(see Methods). This estimates an annual mean radiative forcing of 
−0.029 W m−2 for 2020, in very close agreement with the forcing 
seen in Fig. 4a (−0.030 W m−2). The emulator also provides an esti-
mate of the regional mean surface ozone changes (Supplementary 
Table 4). In contrast to NOx, reductions in emissions of other 
short-lived pollutants, especially SO2, cause warming from weaken-
ing negative aerosol forcing. These two effects more-or-less cancel 
in our simulations, although on balance we expect a small warming 
effect over the next two years (Fig. 4b).

In spite of the uncertainty, our results indicate that reductions of 
NOx have a cooling effect which will probably offset a considerable 
fraction of the warming that comes from reductions in emissions of 
other short-lived pollutants. This suggests that policies directed at 
limiting pollution from road transport could offset the short-term 
warming that might come from policies that reduce pollution from 
the power and industry sector. Therefore, we recommend that poli-
cies are enacted to cut pollution from all three sectors at the same 
time. This is a useful way forward for net-zero transition pathways 
so we can avoid any short-term warming effects that might come 
from reductions in aerosol pollution29.

The need for a green recovery
As we have shown, the climate effect of the immediate COVID-19- 
related restrictions is close to negligible and lasting effects, if any, 
will only arise from the recovery strategy adopted in the medium 
term. To that end, we assess the effect of different scenarios includ-
ing a fossil-fuelled recovery and two different scenarios of green 
stimulus (all pathway assumptions are summarized in Table 1).

Due to the different warming and cooling trends from 
short-lived pollutants, the 2020–2030 climate response to the  

different pathways remains uncertain but is probably negligible 
whatever path the recovery takes (Figs. 4 and 5 and Extended Data 
Figs. 3 and 4). However, differences manifest themselves after 2030. 
Figure 5 shows estimated changes in CO2 emissions and the cli-
matic responses for the four assessed pathways. We find that both 
the two-year blip pathway, where the economic recovery maintains 
current investment levels, and the fossil-fuelled recovery pathway 
are likely to exceed 1.5 °C above pre-industrial limit by 2050 (>80%; 
Extended Data Fig. 5). Conversely, choosing a pathway with strong 
green stimulus assumptions (~1.2% of global gross domestic prod-
uct), including climate policy measures, has a good chance (~55%; 
Extended Data Fig. 5) of keeping global temperature change above 
pre-industrial within the 1.5 oC limit, saving around 0.3 oC of future 
warming by 2050 (0.2 °C for the moderate green stimulus pathway).

Our work shows that the global temperature signal due to the 
short-term dynamics of the pandemic is likely to be small. These 
results highlight that without underlying long-term system-wide 
decarbonization of economies, even massive shifts in behaviour, 
only lead to modest reductions in the rate of warming. However, 
economic investment choices for the recovery will strongly affect 
the warming trajectory by mid-century. Pursuing a green stimu-
lus recovery out of the post-COVID-19 economic crisis can set the 
world on track for keeping the long-term temperature goal of the 
Paris Agreement within sight.

Lastly, by combining large datasets from surface air quality 
networks with mobility data, we have illustrated the science ben-
efits from timely and easy access to big data. Such data syntheses 
can help epidemiology and environmental sciences to provide the 
evidence base for the solutions that are urgently needed to build a 
resilient recovery to the devastating pandemic. Google, Apple and 
other big data providers are encouraged to continue to provide and 
expand their data offerings.
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Fig. 5 | Longer term climate response. a–c, Emissions of CO2 (a), CO2 concentrations (b) and the global surface air temperature response (c) for the 
what-if pathways from Table 1, emulated by the FaIR v.1.5 model. The baseline pathway is also plotted but largely obscured by the two-year-blip  
pathway. The 5–95% Monte Carlo sampled uncertainties are shown and weighted according to their historical fit to observations (red dotted line)32  
shown in c (see Methods).
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Methods
CO2 emission estimates. The Google mobility analysis. Google5 and Apple6 mobility 
data were accessed on 5 July 2020. National average Google data were used for 
114 countries and the US states. Mobility was provided in six categories of which 
we used four in our analyses (transit stations, residential, workplaces and retail 
and recreation). These data represent the number of Android phones at assigned 
locations, representing transit stations, homes, workplaces, retail outlets and parks. 
Apple mobility data were from phone movement changes available for 57 countries 
providing data on changes in transit use, walking and driving, depending on 
country. Google data were referenced to the day-of-week average in the five-week 
period from 3 January to 6 February 2020. Apple used a baseline of 13 February 
and did not account for day-of-week effects. The Apple data were considerably 
more variable and were only used as a check on the other datasets. Our tests found 
that the Google transit mobility trends agreed well with Apple driving trends in 
the 56 nations with overlapping data (Fig. 1a, Supplementary Fig. 1 and Extended 
Data Fig. 1) and this gave us confidence to use the Google mobility data as an 
estimate of general trends in emissions from surface transport. Correlations of 
the Apple driving data with Google transit data were stronger than 0.8 (during 
February–June 2020) for 37 countries and their trends typically agreed to within 
20% for April 2020 (Extended Data Fig. 1). For the United Kingdom, Apple 
driving data agree well with government analysis of car journeys (Supplementary 
Fig. 2), whereas Google transit data appear to be more of a hybrid measure. 
Note, as discussed in the observational evidence section, NOx emissions might 
be expected to be more closely aligned to commercial vehicles. Changes for these 
vehicles in the United Kingdom over the period of COVID-19 restrictions were 
less than indicated by either Apple or Google data (compare light van and heavy 
goods vehicle use to Google and Apple data in Supplementary Fig. 2). Therefore, 
we expect the Google mobility data to overestimate emission trends in the other 
sectors and we compare our approach for estimating granular near-real-time 
emission changes with the previous approaches of Liu et al.2 and Le Quéré et al.3 
and with observations of NO2 to test the assumptions.

The Le Quéré et al. sector analysis. Le Quéré et al.3 analysed fossil fuel CO2 
emission changes in eight sectors (power, surface transport, residential, public 
and commercial, industry, national shipping, international shipping, national 
aviation and international aviation) and 69 countries representing 97% of global 
emissions. The Le Quéré et al. estimates are based on a global estimate of sector 
emission reductions according to a 1–3 level of confinement. The confinement 
level estimates were obtained from government (where accessible) and cross-media 
reports, while the sectoral activity data were from multiple streams of data for each 
sector including industry reports and were available daily or weekly. Changes in 
emissions as a function of the confinement level, for each sector, were estimated 
by quantifying changes in individual and industrial activity in each sector as a 
function of the observed level of confinement for all countries together. The data 
are then extrapolated for each country and each day, depending on their level of 
confinement and their mean emission levels in each sector. The United States and 
China were treated at state level and provincial level, respectively. Low, medium 
and high estimates of the emission changes resulting from uncertainty in the 
activity data among countries for different confinement levels were tested against 
our data. It was found that the high estimates agreed best with the Google transit 
trends during January to June 2020 (see Fig. 1 and Supplementary Figs. 1 and 2b). 
Projections for 2020 were also provided.

Mobility-based emission estimates. As mobility analysis does not cover all sectors 
or countries to make a global emission estimate we combine the mobility analysis 
with components of the analysis in Le Quéré et al.3 to estimate global emission 
changes for CO2 and other pollutants that were due to the COVID-19 restrictions.

We adopt the sector approach of Le Quéré et al.3 but substitute their 
percentage changes in the emissions from surface transport, residential, public 
and commercial and industry sectors, with Google mobility changes in transit, 
residential, retail and recreation, and workplaces respectively. For the power sector, 
we used a hybrid approach, using a combined weighting of workplace, residential 
and retail mobility weighted by the 2019 national split of industrial, residential and 
commercial emissions. Then we used this weighted mobility measure to scale the 
power sector emissions. Finally, applying a scaling to match the global emission 
change in the power sector of the Le Quéré et al. high estimate. We also directly 
used the Le Quéré et al. emission trends for international and national aviation 
and shipping. In the 45 countries with only Google data available, the average 
emission changes from the 69 nations of Le Quéré et al. were used in the sectors 
not covered by the Google mobility data. Note that for simplicity and following 
Le Quéré et al., shipping changes are added to the surface-transport trends in 
the analyses presented in Fig. 2 and Supplementary Figs. 3 and 4. All emission 
changes are compared to a daily emission rate which is the annual averaged 2019 
emission estimated for that country divided by 365 (using the data and approach 
from Le Quéré et al.). This assumption was tested by analysing the Liu et al.2 data 
which included daily seasonal variation from 2019 and repeating our analysis 
on Climate Model Intercomparison Project Phase 6 (CMIP6) emission data33 for 
NOx as a test. We found that adding a seasonal cycle would decrease the January 
to May 2020 emission change estimate by 3%. However, as the Google analysis 

also does not account for a seasonal cycle, it is difficult to gauge the overall error 
in our estimates. To aid comparison with Le Quéré et al. and for consistency 
with the simple climate modelling approach discussed in Surface temperature 
change estimates, we choose not to introduce a seasonal cycle in our analyses. The 
combined dataset gives daily CO2 emission changes for 2020, across eight sectors 
and 123 countries, covering 99% of global emissions. The high estimate of Le 
Quéré et al. and new mobility-based emission estimates were found to agree well 
with each other, both at the individual US state level and at the country level for the 
56 countries with overlapping data (Supplementary Figs. 1, 3 and 4 and Fig. 1b).

Supplementary Table 1 compares the global average trends and that from some 
major nations to the CO2 estimates in Le Quéré et al.3 and that of Liu et al.2. Our 
trends are expected to be higher than the other datasets but this does not manifest 
itself for first-quarter trends in all countries. As the Google trends only start on 
15 February, our analysis will underestimate first-quarter trend estimates where 
changes occurred before this date. More interesting are the differences with the 
Liu et al.2 dataset for India and Russia, where their trends are considerably smaller. 
This could be caused by the differences with the reference assumptions. The 
approach of Liu et al.2 makes a daily reference comparison with 2019 emissions and 
both nations show declining emissions in the first quarter of 2019, whereas our 
reference is taken as the Google mobility base-period of 3 January to 6 February 
(see The Google mobility analysis). As the emission data of Le Quéré et al.3 are 
well-correlated in time with the Google mobility estimates and also quantitatively 
agree (see Supplementary Figs. 3 and 4), we assume that the mobility trends we see 
are largely a response to COVID-19. However, more work will be needed to fully 
understand and resolve these differences.

Non-CO2 emission estimates. The Emission Database for Global Atmospheric 
Research (EDGAR) v.5.0 (ref. 14) provides gridded and national-level sectoral 
emissions on methane, nitrous oxide and several short-lived species. The last 
year available is 2015. The sectors used in the EDGAR analyses are mapped 
onto the sectors from Le Quéré et al.3 used here, according to the breakdown in 
Supplementary Table 2. The national- and sector-level emission changes for 2020 
are then estimated by equation (1).

ΔEin;isðtÞ ¼ Ebasein;is
ΔCin;isðtÞ
Cbasein;is

ð1Þ

where ΔEin,is(t) is the emission change (in kt day−1) of the species as a function of 
nation (in) and sector (is). Ebasein,is is the annual emission divided by 365 of the 
species from the sector and nation for 2015. ΔCin,is(t) and Cbasein,is are the CO2 
emission change over 2020 and the average daily baseline emission, respectively, 
in the sector and nation being considered (CO2 is in units of MtCO2 day−1). 
Similar equations are used for international aviation and shipping, where the 
global emission from aviation or shipping is ratioed by the globally averaged CO2 
emission change in the corresponding sum over the national change in sectors 
from the data of Le Quéré et al.3. The resulting changes are shown in Figs. 2 and 3  
and Supplementary Figs. 5 and 6. Note that only fossil fuel CO2 emissions were 
accounted for in Le Quéré et al., so the fractional changes refer to fossil fuel only. 
Agricultural and waste emissions are included in non-CO2 analyses but assumed 
not to change. This leads to a reduced fraction of global emissions for non-CO2 
gases being covered and smaller emission changes for many species (Fig. 2). The 
assumption that a national sector’s emission change will respond uniformly is 
obviously an important one. There are limited data to explore this assumption, 
although Liu et al.2 and Le Quéré et al.3 discuss how well it applies for CO2 in 
specific sectors in specific countries. Extended Data Fig. 1 and Supplementary  
Fig. 2 and the discussion in CO2 emissions estimates show that Google mobility 
data are unlikely to be a perfect proxy for NOx trends in the United Kingdom but at 
least would be expected to be strongly correlated and close to the right magnitude. 
This is also supported by the NO2 analysis in Fig. 3 and Supplementary Fig. 7. Our 
approach of assuming that national sectors change in the same way may partly 
explain why time series for CO2 and non-CO2 species evolve in a similar fashion 
in Fig. 2a. However, Supplementary Fig. 5 shows that sectors do evolve differently 
for different species. To examine this, we performed substitution tests where we 
crudely made large changes to specific national sector emissions time series or set 
them to zero. These tests suggested that the similar patterns seen across species in 
Fig. 2a are more a product of national restrictions evolving more-or-less together 
than of non-varying abatement choices within a national sector.

Emission scenarios. The generated datasets firstly combine sector-specific 
mobility changes referenced to the 3 January to 6 February 2020 period, with 
national lockdown measures. The method then uses published national emission 
inventories for either 2019 (for CO2) or 2015 (for non-CO2) to derive absolute 
emission changes which would also be relative to the early 2020 period. This 
reference is then projected out to 2030 to form an emission baseline representing 
current NDCs15. To explore the temperature response to emission changes relative 
to this baseline, the bottom-up emission change estimates from the first four 
months of 2020 have been extended according to the scenarios illustrated in  
Table 1. Four scenarios are explored: two-year blip, fossil-fuelled recovery, 
moderate green stimulus and strong green stimulus. The two-year blip scenario 
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assumes climate action to continue at the same level of ambition as implied by 
the current NDCs15 until 2030—approximated by the implied global carbon price 
consistent with the emission reduction resulting from the NDCs. The fossil-fuelled 
recovery follows a path that lies 10% higher than the NDC path. The moderate 
green stimulus assumes about a 35% reduction in total global GHG emissions 
relative to the baseline NDC path and a further decline of global CO2 emissions 
towards zero emissions in 2060. The Kyoto emissions totals of these NDC baskets 
are broken into components using the Silicone package34 by interpolating between 
the MESSAGE-GLOBIOM implementations of the middle-of-the-road shared 
socioeconomic pathway (SSP2) scenarios35,36

. Where CO2 is defined directly, we 
interpolate from that instead. The strong green stimulus assumes about a 52% 
reduction in total global GHG emissions relative to the baseline NDC path and a 
further decline of global CO2 emissions towards zero emissions in 2050. Non-CO2 
emissions are estimated by interpolating between the sustainability SSP1 scenarios 
implemented by the IMAGE model37. Scenarios are given as emissions of 39 species 
from anthropogenic and natural sources and volcanic and solar radiative forcing 
(see Smith et al.21 for details). Only the ten species evaluated in this paper are 
changed. The original dataset gives annual emissions from 1750 to 2100 and these 
are linearly interpolated to monthly values, to provide higher time resolution for 
the subsequent calculations of effective radiative forcing and temperature.

Comparison to NO2 observations. Hourly observations of NO2 are taken from 
the OpenAQ database (https://openaq.org/) between 1 January 2018 and 3 May 
2020, giving 1,747,189 hourly observations from 2,873 sites around the world. 
For each observation, a spatially and temporally co-located model value for 
the meteorological, chemical and emissions state is acquired from the NASA 
GEOS Composition Forecast (GEOS-CF) system. GEOS-CF integrates the 
GEOS-Chem chemistry model into the GEOS Earth System Model38 providing 
global hourly analyses of atmospheric composition at 25 × 25 km2 spatial resolution 
in near-real-time. Anthropogenic NOx emissions are prescribed using monthly 
HTAP bottom-up emissions39, with annual scale factors based on OMI satellite data 
applied to it to account for year-over-year changes. GEOS-CF does not account for 
emission reductions related to COVID-19, providing a business-as-usual estimate 
of NO2 that serves as a reference baseline for surface observations. For each site, 
a function describing the time-dependent model bias (observed value – modelled 
value) is developed using the 2018 and 2019 observations on the basis of the 
XGBoost algorithm40, with the model meteorological, chemical and emissions 
states as the dependent variables. Of these data, 50% are used for training and 50% 
for testing. For 2020, we predict the concentration of NO2, by taking the model 
output time series of NO2 at each station and add the bias predicted by our trained 
algorithm. This then provides a counterfactual for the NO2 concentration had 
COVID-19 restrictions not been put into place. We calculate the ratio between the 
actual concentration and that predicted for each site and then take the mean across 
all sites within a country. These data are compared to 26 country-level emission 
estimates in Supplementary Fig. 7 and the country-mean reductions compared to 
that predicted from the mobility data are shown in Fig. 2b.

Surface temperature change estimates. From the emission scenarios in Table 1, 
global averaged effective radiative forcing (ERF) and near-surface air temperature 
are computed. First, ERFs are calculated using the FaIR v.1.5 model and the 
methodology outlined in ref. 21 for 13 different forcing components. Uncertainties 
are estimated by 10,000 Monte Carlo samples of relative ERF uncertainties, 
using ranges based on IPCC Assessment Report 5 (ref. 41), see ref. 21 for details. 
NOx emissions affect direct forcing from nitrate aerosol and tropospheric 
ozone radiative forcing. Additionally, the ERF from aviation contrails and 
contrail-induced cirrus are assumed to scale with NOx emissions from the  
aviation sector.

The two-layer energy balance model of Geoffroy et al.42,43 including efficacy 
of deep ocean heat uptake is used to translate these ERF time series into surface 
temperature estimates. The five free parameters in this model are chosen to match 
individual CMIP6 model behaviour by fitting the parameters to 4 × CO2 abrupt 
simulations in 35 models; these parameter fits are shown in Supplementary  
Table 3. To estimate uncertainties, parameters corresponding to an individual 
model are picked randomly 10,000 times and paired to a sampled ERF parameter 
range for each of the 13 ERF time series. The two-layer model is then run with each 
of these parameter sets to make a surface temperature projection. The resulting 
plume of possible projections is then compared to Cowtan and Way32 observed 
surface temperature record. The Cowtan and Way data have been adjusted to allow 
for the fact that the near-surface air temperature has warmed more than the sea 
surface temperature. To make this adjustment, the CMIP6 ratio of near-surface 
air temperature to blended near-surface air temperature and surface ocean 
temperatures is made over the historical period and found to converge towards 
8% in recent years44. This is then used to scale the observations upwards. The root 
mean square errors of the simple model projections are then compared to these 
scaled observations over the period 1850–2019 inclusive. The goodness of  
fit is then used to provide projected probability distribution based on  
a weighted average of the goodness of fit. This follows the method outlined in 
Knutti et al.45, with the exception that we do not downweight ensemble members 
on the basis of independence.

Testing the ozone forcing parameterization. The FaIR v.1.5 model used adopts a 
simple global annual mean emission-forcing relationship for tropospheric ozone 
which may not capture the seasonal and regional nuances of the atmospheric 
chemical response to the changes in NOx and other emissions. To test this, a 
second ozone parameterization was used based upon source–receptor relationships 
from models that participated in the Task Force on Hemispheric Transport of 
Air Pollutants (TF-HTAP) project46. The parameterization27,28 emulates the ozone 
response in models to applied perturbations in ozone precursor emissions (NOx, 
CO and NMVOCs) and global CH4 abundance. For emission perturbations in CO 
and NMVOCs a linear scaling factor is used whereas a nonlinear factor is used 
for changes in NOx and CH4. The 2020 annual mean tropospheric ozone radiative 
forcing and annual mean tropospheric ozone burden change deduced from this 
parameterization were −0.029 W m−2 and 7.5 Tg for the high emission scenario 
used here.

Data availability
A GitHub repository of the generated datasets is available from https://github.com/
Priestley-Centre/COVID19_emissions and on Zenodo https://doi.org/10.5281/
zenodo.3957826. Google LLC mobility data are available from https://www.google.
com/covid19/mobility/ Apple LLC mobility data are available from https://www.
apple.com/covid19/mobility EDGAR gridded emissions data are available from 
https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR Cowtan and Way 
temperature observations are available from https://www-users.york.ac.uk/~kdc3/
papers/coverage2013/had4_krig_annual_v2_0_0.txt Le Quéré et al.3 emissions 
data are available from https://www.icos-cp.eu/gcp-covid19 The air quality data are 
available from https://openaq.org/. The GEOS modelled air pollution data used in 
this study/project have been provided by the Global Modelling and Assimilation 
Office at NASA Goddard Space Flight Center and are available from https://
opendap.nccs.nasa.gov/dods/gmao/geos-cf/assim.
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Extended Data Fig. 1 | Comparison of Google and Apple data. Comparison of Google and Apple data. The Apple driving change in April plotted against 
the Google transit change for available nations. Example countries are highlighted. The size of the symbol gives a measure of the correlation over Feb-June 
2020, ranging from 0.39 for Sweden to over 0.96 (India). The dashed line indicates equality.
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Extended Data Fig. 2 | Two-year blip scenario. Two-year blip scenario. Emissions, and best estimates of CO2 concentration and effective radiative forcing 
(ERFs) components from the two-year blip scenario. Component ERFs are shown with minor ERFs in panel b and the three largest ERF changes in c.
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Extended Data Fig. 3 | Longer term climate projections to 2030. Longer term climate projections to 2030. Emissions, ERF and temperature response 
from the three scenarios over 2019-2030 (top). The probabilities are generated by varying the emulated CMIP6 model (one of 35) and ERF ranges with 
a 10,000 Monte Carlo sample. Distributions are weighted according to their goodness of fit over the historical period (see Methods surface temperature 
change estimates section).
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Extended Data Fig. 4 | Longer term climate projections to 2050. Longer term climate projections to 2050. As Extended Data Fig. 3 except for the period 
extended to 2019-2050.
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Extended Data Fig. 5 | Probability distributions of passing 2050 global warming levels. Probability distributions of passing 2050 global warming levels. 
Levels are relative to 1850-1900 for the scenarios in Table 1, generated by varying the emulated CMIP6 model (choosing one of 35 model formulations) 
and ERF ranges. Distributions are weighted according to their goodness of fit over the historical period (see Methods surface temperature change 
estimates section).
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